###
DOI:
功能高分子学报:2014,27(2):-
本文二维码信息
含石墨烯的聚乳酸复合纳米纤维的制备及细胞相容性
(1.东华大学化学化工与生物工程学院,上海 201620;2.东华大学化学化工与生物工程学院,上海 201621;3.东华大学化学化工与生物工程学院,上海 201622;4.东华大学化学化工与生物工程学院,上海 201623;5.东华大学化学化工与生物工程学院,上海 201624;6.东华大学化学化工与生物工程学院,上海 201625)
Preparation and Cytocompatibility Evaluation of PLLA-Graphene Composite Nanofibers
(1.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;2.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201621, China;3.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201622, China;4.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201623, China;5.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201624, China;6.College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201625, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1577次   下载 1053
    
中文摘要: 利用电纺丝技术制备了聚乳酸(PLLA)-石墨烯(Gr)复合纳米纤维。通过SEM、TEM及拉曼光谱观察和分析了该复合纳米纤维的形貌及Gr在PLLA中的分散状态,通过DSC、TG、力学拉伸及接触角测试等表征方法研究了PLLA-Gr复合纳米纤维的热性能、力学性能、亲水性等物理性能,最后,通过MTT法检测一种神经胶质细胞——雪旺细胞(SCs)在该复合纳米纤维支架上的生长和增殖行为,评价其细胞相容性。结果表明:低含量的Gr能较好地分散在PLLA纳米纤维中,且随着m(Gr)∶m(PLLA)从0增加到2.0%,所得到的纤维直径呈现先减小后增加的趋势。当m(Gr)∶m(PLLA)增加到1.0%时,PLLA-Gr纳米纤维的直径达到最小,为(0.50±0.19) μm,对应的拉伸强度较未添加Gr时增加也最大达50%。PLLA-Gr纳米纤维膜的结晶度与Gr的含量和分散性有关。细胞培养1、4、7 d后的MTT检测结果表明PLLA-Gr复合纳米纤维能促进SCs的黏附和生长。PLLA-Gr复合纳米纤维具有较好的细胞相容性。
Abstract:Composite nanofibers of poly(L-lactic acid)-graphene (PLLA-Gr) were prepared by electrospinning. The morphology and chemical structure of the electrospun PLLA-Gr fibrous mats were examined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Raman Spectroscopy. The thermal, mechanical properties and wettability were characterized by means of DSC, TG, tensile tests and water contact angle measurement. Thereafter, cytocompatibility in terms of adhesion and proliferation of Schwann cells (SCs) on the composite nanofibrous scaffolds was evaluated by MTT assay and SEM observation. The results showed that Gr could be dispersed well in the PLLA nanofibers at a lower content. With the increasing of Gr content (m(Gr):m(PLLA)) from 0 to 2.0%, the resultant fiber diameters varied in a manner of thinning down at first and then increasing slightly. When m(Gr)∶m(PLLA) was increased to 1.0%, the diameter of PLLA-Gr nanofibers reached the minimum of (0.50±0.19) μm, with a corresponding tensile strength increased maximally by 50% compared to that from the electrospun pure PLLA nanofibers. Moreover, crystallinity of the nanofibrous PLLA-Gr membranes was governed by the content and dispersivity of Gr within the PLLA matrix. MTT assay at 1, 4 and 7 days showed that PLLA-Gr composite nanofibers could promote adhesion and proliferation of the Schwann cells. The electrospun nanofibrous PLLA-Gr is of good cytocompatibility.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(51073032);上海市科学技术委员会‘浦江人才计划’(10PJ1400200);中央高校基本科研业务费专项资金资助项目(11D10540,13D110523);教育部留学回国人员科研启动基金项目(11W10523)
引用本文:
董文,包敏,李碧云,袁卉华,娄向新,张彦中.含石墨烯的聚乳酸复合纳米纤维的制备及细胞相容性[J].功能高分子学报,2014,27(2):.
DONG Wen,BAO Min,LI Bi-yun,YUAN Hui-hua,LOU Xiang-xin,ZHANG Yan-zhong.Preparation and Cytocompatibility Evaluation of PLLA-Graphene Composite Nanofibers[J].Journal of Functional Polymers,2014,27(2):.